Yahoo Web Search

Search results

  1. The Elements (Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean ...

    • Overview
    • Sources and contents
    • Influence

    Elements, treatise on geometry and mathematics written by the Greek mathematician Euclid (flourished 300 bce). The Elements is one of the most influential books ever written. It set a standard for deductive reasoning and geometric instruction that persisted, practically unchanged, for more than 2,000 years. It is sometimes said that, other than the...

    Euclid compiled his Elements from a number of works of earlier men. Among these were Hippocrates of Chios (flourished c. 440 bce), not to be confused with the physician Hippocrates of Cos (c. 460–375 bce). The latest compiler before Euclid was Theudius, whose textbook was used in the Academy and was probably that used by Aristotle (384–322 bce). The older elements were at once superseded by Euclid’s and then forgotten. For his subject matter, Euclid doubtless drew upon all his predecessors, but it is clear that the whole design of his work was his own, culminating in the construction of the five regular solids, now known as the Platonic solids.

    A brief survey of the Elements belies a common belief that it concerns only geometry. This misconception may be caused by reading no further than Books I through IV, which cover elementary plane geometry. Euclid understood that building a logical and rigorous geometry (and mathematics) depends on the foundation—a foundation that Euclid began in Book I with 23 definitions (such as “A point is that which has no part” and “A line is a length without breadth”), five unproved assumptions that Euclid called postulates (now known as axioms), and five further unproved assumptions that he called common notions. (See the table of Euclid’s 10 initial assumptions.) Book I then proves elementary theorems about triangles and parallelograms and ends with the Pythagorean theorem. (For Euclid’s proof of the theorem, see Sidebar: Euclid’s Windmill Proof.)

    The subject of Book II has been called geometric algebra, because it states algebraic identities as theorems about equivalent geometric figures. Book II contains a construction of “the section,” the division of a line into two parts such that the ratio of the larger to the smaller segment is equal to the ratio of the original line to the larger segment. (This division was renamed the golden section in the Renaissance after artists and architects rediscovered its pleasing proportions.) Book II also generalizes the Pythagorean theorem to arbitrary triangles, a result that is equivalent to the law of cosines (see plane trigonometry). Book III deals with properties of circles and Book IV with the construction of regular polygons, in particular the pentagon.

    Book V shifts from plane geometry to expound a general theory of ratios and proportions that is attributed by Proclus (along with Book XII) to Eudoxus of Cnidus (c. 395/390–342/337 bce). While Book V can be read independently of the rest of the Elements, its solution to the problem of incommensurables (irrational numbers) is essential to later books. In addition, it formed the foundation for a geometric theory of numbers until an analytic theory developed in the late 19th century. Book VI applies this theory of ratios to plane geometry, mainly triangles and parallelograms, culminating in the “application of areas,” a procedure for solving quadratic problems by geometric means.

    Books VII–IX contain elements of number theory, where number (arithmos) means positive integers greater than 1. Beginning with 22 new definitions—such as those for unity, even, odd, and prime—these books develop various properties of the positive integers. For instance, Book VII describes a method, antanaresis (now known as the Euclidean algorithm), for finding the greatest common divisor of two or more numbers; Book VIII examines numbers in continued proportions, now known as geometric sequences (such as ax, ax2, ax3, ax4…); and Book IX proves that there are an infinite number of primes.

    Students save 67%! Learn more about our special academic rate today.

    In ancient times, commentaries were written by Heron of Alexandria (flourished 62 ce), Pappus of Alexandria (flourished c. 320 ce), Proclus, and Simplicius of Cilicia (flourished c. 530 ce). The father of Hypatia, Theon of Alexandria (c. 335–405 ce), edited the Elements, making textual changes and some additions. His version quickly drove other editions out of existence, and it remained the Greek source for all subsequent Arabic and Latin translations until 1808, when an earlier edition was discovered in the Vatican.

    The immense impact of the Elements on Islamic mathematics is visible through the many translations into Arabic from the 9th century forward, three of which must be mentioned: two by al-Ḥajjāj ibn Yūsuf ibn Maṭar—first for the ʿAbbāsid caliph Hārūn al-Rashīd (ruled 786–809) and again for the caliph al-Maʾmūn (ruled 813–833)—and a third by Isḥāq ibn Ḥunayn (died 910), son of Ḥunayn ibn Isḥāq (808–873), which was revised by Thābit ibn Qurrah (c. 836–901) and again by Naṣīr al-Dīn al-Ṭūsī (1201–74). Euclid first became known in Europe through Latin translations of these versions.

    The first extant Latin translation of the Elements was made about 1120 by Adelard of Bath (flourished 12th century), who obtained a copy of an Arabic version in Spain, where he traveled while disguised as a Muslim student. Adelard also composed an abridged version and an edition with commentary, thus starting a Euclidean tradition of the greatest importance until the Renaissance unearthed Greek manuscripts. Incontestably the best Latin translation from Arabic was made by Gerard of Cremona (c. 1114–87) from the Isḥāq-Thābit versions.

    The first direct translation from the Greek without an Arabic intermediary was made by Bartolomeo Zamberti and published in Vienna in Latin in 1505, and the editio princeps of the Greek text was published in Basel, Switzerland, in 1533 by Simon Grynaeus. The first English translation of the Elements was by Henry Billingsley in 1570. The impact of this activity on European mathematics cannot be exaggerated: the ideas and methods of Kepler, Pierre de Fermat (1601–65), René Descartes (1596–1650), and Isaac Newton (1642 [Old Style]–1727) were deeply rooted in, and inconceivable without, Euclid’s Elements.

  2. Oct 19, 2024 · Accessed 23 October 2024. Articles from Britannica Encyclopedias for elementary and high school students. Euclid, the most prominent mathematician of Greco-Roman antiquity, best known for his geometry book, the Elements. It is sometimes said that, other than the Bible, the Elements is the most translated, published, and studied of all the books ...

  3. Biography. Euclid of Alexandria is the most prominent mathematician of antiquity best known for his treatise on mathematics The Elements. The long lasting nature of The Elements must make Euclid the leading mathematics teacher of all time. However little is known of Euclid's life except that he taught at Alexandria in Egypt.

  4. Euclid, often referred to as the “Father of Geometry,” was an ancient Greek mathematician whose work has had an enduring influence on mathematics and science for over two millennia. He is best known for his monumental treatise Elements, a 13-book compilation of mathematical knowledge that organized and systematized much of the mathematics ...

  5. en.wikipedia.org › wiki › EuclidEuclid - Wikipedia

    Euclid (/ ˈ j uː k l ɪ d /; Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.

  6. People also ask

  7. Oct 23, 2015 · Euclid of Alexandria (lived c. 300 BCE) systematized ancient Greek and Near Eastern mathematics and geometry. He wrote The Elements, the most widely used mathematics and geometry textbook in history. Older books sometimes confuse him with Euclid of Megara. Modern economics has been called "a series of footnotes to Adam Smith," who was the ...

  1. People also search for