Yahoo Web Search

Search results

  1. People also ask

  2. Jun 19, 2017 · This paper draws the ethnomusicological perspective on the entire development of music, instruments, and performance, from the times of H. neanderthalensis and H. sapiens into those of modern musical history, and it is written with the deliberate intention of informing readers who are without special education in music, and providing necessary ...

    • Overview
    • Technological developments

    Conventional Western thinking claimed that the earliest instruments were slightly modified natural objects such as bones, shells, or gourds. They played only one pitch and then evolved into more complex forms. However, it appears that bone flutes from Neanderthal caves had finger holes, and recent archaeological finds in China included bone flutes from 7000 bc that not only have seven finger holes but an additional aperture that may have been drilled to correct a poorly placed hole. Thus, early humans appear to have been just as sensitive to pitch and tone colour as were most other sentient creatures, such as birds, cats, dogs, and whales. None of the sounds they heard or made moved from simple to complex. Aztec clay versions of shell trumpets imitated the internal chambers of the nautilus; the instruments’ construction may indicate a sophisticated use of the overtone series to obtain varied pitches (as is done on the bugle).

    The stretched string of a bow can produce several pitches when it is beaten, and the string can be stopped at points along its length to produce varied sounds. In addition, a resonator such as a pot or gourd is often used to increase the volume of the sound. The player’s mouth can add variety to both volume and pitch. A tube of bamboo can become musical when it is struck on the ground, and a set of different-sized tubes can produce a melodic and rhythmic ensemble. Lifting strips of the bark from a tube and adding bridges under the strips creates a melodic zither, for which each strip produces a separate pitch. The sound can be enhanced by placing one end of the tube in a resonator, whether a gourd or a tin can. In sum, the complexity of music depends less on technology than on human imagination.

    The first step in the building of any instrument is the selection and preparation of material. Wood used for wind or stringed instruments needs to be seasoned, as do the reeds used in oboes, clarinets, saxophones, and related instruments. Metals, which are widely used for strings, bells, cymbals, gongs, trumpets, and horns, must be manufactured and cast—often originally by secret processes. Next, the construction and tuning of all instruments require skill and craftsmanship: the piercing of a tube to a uniform or expanding width, the flaring of the bell of a wind instrument to increase sonority, the measurement of the bars of a saron (for the Javanese gamelan) or of a glockenspiel, the curvature of the back of a lute or ʿūd, the internal and external structure of the body of a violin, a koto, or even a shakuhachi. All of these involve accurate workmanship from experts in wood and metal and, in many instances, a knowledge of the mathematics of sound.

    The mathematical basis of accurate tuning systems has been the subject of philosophical and scientific speculation since ancient times; nevertheless, no single system has been deemed perfect (see also tuning and temperament). All practical tuning systems involve a series of compromises, a fact that instrument makers have known for centuries.

    The instrument maker’s skill, like that of the cabinetmaker and the silversmith, was developed by long practice, and the principles that determine both tone and intonation were discovered by trial and error. The growth of instrumental playing in 16th-century Europe stimulated the production of instruments to be used not merely for ceremonial and official entertainment but also for social occasions and private pleasure. From this time, records began to be kept of the names of makers, many of whom established family businesses that lasted for several generations. These include, for example, Andrea Amati (16th century), a violin maker in Cremona, Italy; Hans Ruckers (late 16th century), a harpsichord maker in Antwerp, Belg.; and Johann Haas (1649–1723), a trumpet maker in Nürnberg (now in Germany). In all literate cultures there are known families or guilds of instrument makers, e.g., for the Middle Eastern ʿūd, South Asian sitar and vina, or Japanese tsuzumi drums. Around the world, instrument makers have long signed their products. Although similar respectful positions are held by instrument makers in cultures without a written record, their reputation is far less likely to spread beyond their particular time and place.

    Instrument makers have always represented a blend of conservatism with the ability to quickly seize on and use a new constructional technique, a new tool, or a new material. Their contribution to both the history of music and the history of musical instruments has been enormous and little appreciated. The older makers of instruments were craftsmen who took delight in the appearance of their work. In some cases, additions are purely decorative, as when pictures were painted on the inside of harpsichord lids or elaborate patterns were carved onto Indian vinas or inlaid into Persian lutes and drums. The rare set of 9th-century court instruments found in Nara, Japan, includes stunning examples of such artisan skills from all over East Asia. Equal beauty is found on many of the anonymously constructed instruments of Oceania. Often these additions are symbolic or totemic; the patterns on the Australian didjeridu identify the clan of the performer, and shapes and patterns on instruments in New Guinea reflect aspects of the environment and culture. Similarly, the dragon heads on the end of Tibetan and Chinese woodwinds have a symbolic meaning in those cultures. Most modern Western instruments reject ornamentation, but overall design and finish are as important as they have always been.

    Conventional Western thinking claimed that the earliest instruments were slightly modified natural objects such as bones, shells, or gourds. They played only one pitch and then evolved into more complex forms. However, it appears that bone flutes from Neanderthal caves had finger holes, and recent archaeological finds in China included bone flutes from 7000 bc that not only have seven finger holes but an additional aperture that may have been drilled to correct a poorly placed hole. Thus, early humans appear to have been just as sensitive to pitch and tone colour as were most other sentient creatures, such as birds, cats, dogs, and whales. None of the sounds they heard or made moved from simple to complex. Aztec clay versions of shell trumpets imitated the internal chambers of the nautilus; the instruments’ construction may indicate a sophisticated use of the overtone series to obtain varied pitches (as is done on the bugle).

    The stretched string of a bow can produce several pitches when it is beaten, and the string can be stopped at points along its length to produce varied sounds. In addition, a resonator such as a pot or gourd is often used to increase the volume of the sound. The player’s mouth can add variety to both volume and pitch. A tube of bamboo can become musical when it is struck on the ground, and a set of different-sized tubes can produce a melodic and rhythmic ensemble. Lifting strips of the bark from a tube and adding bridges under the strips creates a melodic zither, for which each strip produces a separate pitch. The sound can be enhanced by placing one end of the tube in a resonator, whether a gourd or a tin can. In sum, the complexity of music depends less on technology than on human imagination.

    The first step in the building of any instrument is the selection and preparation of material. Wood used for wind or stringed instruments needs to be seasoned, as do the reeds used in oboes, clarinets, saxophones, and related instruments. Metals, which are widely used for strings, bells, cymbals, gongs, trumpets, and horns, must be manufactured and cast—often originally by secret processes. Next, the construction and tuning of all instruments require skill and craftsmanship: the piercing of a tube to a uniform or expanding width, the flaring of the bell of a wind instrument to increase sonority, the measurement of the bars of a saron (for the Javanese gamelan) or of a glockenspiel, the curvature of the back of a lute or ʿūd, the internal and external structure of the body of a violin, a koto, or even a shakuhachi. All of these involve accurate workmanship from experts in wood and metal and, in many instances, a knowledge of the mathematics of sound.

    The mathematical basis of accurate tuning systems has been the subject of philosophical and scientific speculation since ancient times; nevertheless, no single system has been deemed perfect (see also tuning and temperament). All practical tuning systems involve a series of compromises, a fact that instrument makers have known for centuries.

    The instrument maker’s skill, like that of the cabinetmaker and the silversmith, was developed by long practice, and the principles that determine both tone and intonation were discovered by trial and error. The growth of instrumental playing in 16th-century Europe stimulated the production of instruments to be used not merely for ceremonial and official entertainment but also for social occasions and private pleasure. From this time, records began to be kept of the names of makers, many of whom established family businesses that lasted for several generations. These include, for example, Andrea Amati (16th century), a violin maker in Cremona, Italy; Hans Ruckers (late 16th century), a harpsichord maker in Antwerp, Belg.; and Johann Haas (1649–1723), a trumpet maker in Nürnberg (now in Germany). In all literate cultures there are known families or guilds of instrument makers, e.g., for the Middle Eastern ʿūd, South Asian sitar and vina, or Japanese tsuzumi drums. Around the world, instrument makers have long signed their products. Although similar respectful positions are held by instrument makers in cultures without a written record, their reputation is far less likely to spread beyond their particular time and place.

    Instrument makers have always represented a blend of conservatism with the ability to quickly seize on and use a new constructional technique, a new tool, or a new material. Their contribution to both the history of music and the history of musical instruments has been enormous and little appreciated. The older makers of instruments were craftsmen who took delight in the appearance of their work. In some cases, additions are purely decorative, as when pictures were painted on the inside of harpsichord lids or elaborate patterns were carved onto Indian vinas or inlaid into Persian lutes and drums. The rare set of 9th-century court instruments found in Nara, Japan, includes stunning examples of such artisan skills from all over East Asia. Equal beauty is found on many of the anonymously constructed instruments of Oceania. Often these additions are symbolic or totemic; the patterns on the Australian didjeridu identify the clan of the performer, and shapes and patterns on instruments in New Guinea reflect aspects of the environment and culture. Similarly, the dragon heads on the end of Tibetan and Chinese woodwinds have a symbolic meaning in those cultures. Most modern Western instruments reject ornamentation, but overall design and finish are as important as they have always been.

  3. Dec 21, 2023 · Music has been an integral part of human history, with different cultures developing their own unique instruments to create mesmerizing melodies. The invention of musical instruments can be traced back to ancient times, with each civilization contributing to the evolution of these incredible tools. In this timeline, we explore the origins of ...

    • Mary Bellis
    • Accordion. An accordion is an instrument that uses reeds and air to create sound. Reeds are thin strips of material that air passes over to vibrate, which in turn creates a sound.
    • Conductor's Baton. In the 1820s, Louis Spohr introduced the conductor's baton. A baton, which is the French word for "stick," ​is used by conductors primarily to enlarge and enhance the manual and bodily movements associated with directing an ensemble of musicians.
    • Bell. Bells may be categorized as idiophones, or instruments sounding by the vibration of resonant solid material, and more broadly as percussion instruments.
    • Clarinet. The clarinet's predecessor was the chalumeau, the first true single reed instrument. Johann Christoph Denner, a famous German woodwind instrument maker of the Baroque era, is credited as the inventor of the clarinet.
  4. Oct 25, 2024 · This article will trace the development of different musical instruments through history, exploring how they have evolved and how instruments from various cultures have influenced modern music. The origins of musical instruments date back to prehistoric times.

  5. What is the oldest known musical instrument? The oldest known musical instrument is a flute made from a vulture's wing bone, found in a cave in Germany and estimated to be around 43,000 years old. How did string instruments evolve over time? String instruments evolved from simple forms like the lyre in ancient Greece to more complex instruments ...

  6. Feb 14, 2018 · Prehistoric musical instruments enable rare and fascinating glimpses into an otherwise largely hidden culture, revealing more and more about our lineage’s ancient past.

  1. People also search for