Yahoo Web Search

  1. Ancient whole-body formula. Naturally assist in the removal of parasites, larvae and eggs. Original broad-spectrum parasite formula with maximum results. Organic natural ingredients

Search results

  1. Jun 17, 2021 · General life history. The general life cycle of parasitic plants can be divided into three stages centered around haustorium development. Each stage can be further subdivided into discrete phases. The early stage, prior to host attachment, begins with seed germination phase and ends with host plant localization.

  2. Aug 20, 2018 · Parasitic plants can be divided based on whether they are photosynthetically active (hemiparasites) or lack photosynthetic activity and rely entirely on a host for carbon (holoparasites), whether they are facultative or obligate parasites, and whether they attach to the host’s roots or stem. Figure 1Representative diversity of parasitic plants.

    • Cuscata. Cuscuta, also commonly known as dodder, has no roots or leaves and instead is identifiable by its yellow or orange stems which have a stringy, hair-like appearance as it is in the morning glory family.
    • Mistletoe. While mistletoe may be commonly associated with Christmas kisses, it's also a parasite. Mistletoe, a group of plants in the order Santalales, are found around the world.
    • Australian Christmas tree (Nuytsia floribunda) Another festive entry, the Australian Christmas tree (Nuytsia floribunda) can photosynthesise but sometimes steals water from neighbouring plants.
    • Ghost plant (Monotropa uniflora) The ghost plant (Monotropa uniflora) is a member of the heather family. It lacks chlorophyll, which is the reason for its distinctive white hue.
    • Overview
    • Host dependence
    • Morphology of parasitic plants
    • Host identification
    • Impact of parasitic plants

    parasitic plant, plant that obtains all or part of its nutrition from another plant (the host) without contributing to the benefit of the host and, in some cases, causing extreme damage to the host. The defining structural feature of a parasitic plant is the haustorium, a specialized organ that penetrates the host and forms a vascular union between the plants.

    Parasitic plants differ from plants such as climbing vines, lianas, epiphytes, and aerophytes; though the latter are supported by other plants, they are not parasitic, because they use other plants simply as a structure on which to grow rather than as a direct source of water or nutrients. Another group of plants that is sometimes confused with parasites is the mycoheterotrophs. Similar to parasitic plants, mycoheterotrophs may lack chlorophyll and photosynthetic capacity, but they live in symbiotic association with fungi that gain nutrition from autotrophic (self-feeding) plants or decaying vegetation. Such plants are not classified as parasitic, because they do not appear to harm the fungi and they lack haustoria.

    Britannica Quiz

    Plants: From Cute to Carnivorous

    Parasitic plants evolved from nonparasitic plants and thus underwent an evolutionary transition from autotrophy to heterotrophy, which may be partial or complete. Indeed, parasitic plants differ in the extent to which they depend on their hosts for nutrients. Hemiparasites have at least some ability to photosynthesize; they primarily rely on their hosts for water and mineral nutrients. Holoparasites, on the other hand, are nonphotosynthetic and depend on their hosts for all nutrition.

    Species of parasitic plants also differ with regard to whether they need the host in order to complete their life cycle. Obligate parasites have an absolute requirement for a host, whereas facultative parasites can live and reproduce in the absence of a host. All holoparasites are, by definition, obligate. Even though hemiparasites are photosynthetically competent, some species nevertheless are obligate in terms of their reliance on a host for their reproduction.

    Given the different origins of parasitism, it is not surprising that parasitism is manifested in diverse ways. Some species parasitize the roots of their hosts, whereas others attack stems. The haustorium itself may develop from roots or stems, depending on the parasite species, and haustoria display a wide range of morphologies. One prominent distinction is in the proportion of a parasite that grows internally versus externally to the host. For most parasite species, only the haustorium is embedded inside the host, serving to feed the parasite located externally to the host. However, the haustorium of some species proliferates in such a way that all vegetative growth occurs within the host (endophytically), and the parasite emerges only to flower. Examples of that include members of the genus Rafflesia, which grow inside the tropical vine Tetrastigma, and stemsuckers (genus Pilostyles), which live within members of the pea family (Fabaceae).

    Exclusive academic rate for students! Save 67% on Britannica Premium.

    Learn More

    There are many other examples of specialized morphology or life cycles that have evolved either as a necessity for parasitism or as a result of the transition from autotrophy. Holoparasite species that do not need to absorb water from the soil may have root systems that are greatly reduced in size or missing entirely. Similarly, leaves that are not needed for photosynthesis may be reduced to scales, and parasite colour may range from cream to yellow to purple, since chlorophyll production is unnecessary. An example of a holoparasite with such features is dodder (Cuscuta), which during vegetative growth has no roots and only scale leaves and therefore appears to be simply a yellow or orange stem with a network of host connections. Flowers of parasitic species often are similar to those of nonparasitic plants, although notable examples of extreme morphology include the huge Rafflesia flower and the bizarre, fleshy Hydnora inflorescence.

    In order to survive and reproduce, parasitic plants must be able to recognize the presence of a neighbouring plant and have mechanisms to ensure that their seeds encounter appropriate hosts. The seeds of generalist parasites (those with a wide range of potential hosts) typically germinate under environmental conditions that are favourable to nonparasites. Once the parasite seeds have developed into seedlings, they then must locate a host. The roots of generalist root parasites are able to recognize and form haustoria with the roots of other plants that they encounter in the soil. Similarly, the threadlike shoot of the generalist dodder seedling, a stem parasite, elongates and uses information about the colour of the host and volatile chemicals it produces in order to orient growth toward the host; once the shoot has reached the host plant, it coils and forms haustorial connections.

    Specialist parasites, many of which are obligates, tend to have additional mechanisms to detect their specific host plants. The best-studied examples are parasites of the family Orobanchaceae (e.g., Orobanche, Phelipanche, and Striga), the seeds of which are extremely small and may sit in the soil for years until the root of an appropriate host has grown nearby. At that point the parasite seed detects a chemical signal (generally a strigolactone, a type of plant hormone) exuded from the host root, which triggers germination of the parasite seed. The parasite radicle (embryonic root) then grows a short distance, typically less than 2 mm (0.08 inch), to contact the host root and produce a haustorium.

    Although most parasitic plant species are considered wild flowers or botanical curiosities, several species are weedy and capable of causing substantial losses of agricultural crops. Among the most harmful are members of the Orobanchaceae. Witchweeds (Striga species), for example, generally attack cereal crops, including corn (maize), sorghum, mill...

  3. Apr 21, 2021 · Just as for regulation of germination, parasitic plants seem to have hijacked extant physiological processes for the attachment to and penetration of host plant tissues by the haustorium. Haustorium formation is an intriguing process, divided into three phases by Brun et al. (2021): (1) attachment to host tissue, (2) penetration of the host ...

    • Harro Bouwmeester, Neelima Sinha, Julie Scholes
    • 2021
  4. Aug 20, 2018 · Parasitic plants can be divided based on whether they are photosynthetically active (hemiparasites) or lack photosynthetic activity and rely entirely on a host for carbon (holoparasites), whether they are facultative or obligate parasites, and whether they attach to the host’s roots or stem.

  5. People also ask

  6. Apr 21, 2021 · Parasitic plants connect to the vasculature of a host plant and take part or all of the water, nutrients, and assimilates they need to complete their life cycle. Parasitic plants represent a unique model for the evolution of intra-kingdom parasitism with intriguing research questions such as how plants were able to evolve the ability to parasitize other plants.

  1. People also search for