Yahoo Web Search

Search results

  1. Aug 26, 2021 · Known as "the father of nuclear physics", Ernest Rutherford's discoveries transformed our understanding of atoms and chemical elements, and fundamentally, of nature itself.

    • 3 min
    • 9.7K
    • UC Science
  2. This video describes what Rutherford's experiment really is. Why and how it happened and how it changed our perspective about atom.

    • 3 min
    • 10K
    • COSMOS
  3. Rutherford had discovered the nuclear atom, a small, positively-charged. nucleus. surrounded by empty space and then a layer of electrons to form the outside of the atom. The discovery of the...

    • Overview
    • Early life and education
    • University of Cambridge

    Ernest Rutherford found that the atom is mostly empty space, with nearly all of its mass concentrated in a tiny central nucleus. The nucleus is positively charged and surrounded at a great distance by the negatively charged electrons.

    What is Ernest Rutherford most famous for?

    Ernest Rutherford is known for his pioneering studies of radioactivity and the atom. He discovered that there are two types of radiation, alpha and beta particles, coming from uranium. He found that the atom consists mostly of empty space, with its mass concentrated in a central positively charged nucleus.

    What is Ernest Rutherford’s most famous experiment?

    Ernest Rutherford’s most famous experiment is the gold foil experiment. A beam of alpha particles was aimed at a piece of gold foil. Most alpha particles passed through the foil, but a few were scattered backward. This showed that most of the atom is empty space surrounding a tiny nucleus.

    Ernest Rutherford (born August 30, 1871, Spring Grove, New Zealand—died October 19, 1937, Cambridge, Cambridgeshire, England) New Zealand-born British physicist considered the greatest experimentalist since Michael Faraday (1791–1867). Rutherford was the central figure in the study of radioactivity, and with his concept of the nuclear atom he led the exploration of nuclear physics. He won the Nobel Prize for Chemistry in 1908, was president of the Royal Society (1925–30) and the British Association for the Advancement of Science (1923), was conferred the Order of Merit in 1925, and was raised to the peerage as Lord Rutherford of Nelson in 1931.

    Rutherford’s father, James Rutherford, moved from Scotland to New Zealand as a child in the mid-19th century and farmed in that agrarian society, which had only recently been settled by Europeans. Rutherford’s mother, Martha Thompson, came from England, also as a youngster, and worked as a schoolteacher before marrying and raising a dozen children, of whom Ernest was the fourth child and second son.

    Ernest Rutherford attended the free state schools through 1886, when he won a scholarship to attend Nelson Collegiate School, a private secondary school. He excelled in nearly every subject, but especially in mathematics and science.

    Another scholarship took Rutherford in 1890 to Canterbury College in Christchurch, one of the four campuses of the University of New Zealand. It was a small school, with a faculty of eight and fewer than 300 students. Rutherford was fortunate to have excellent professors, who ignited in him a fascination for scientific investigation tempered with the need for solid proof.

    Britannica Quiz

    Faces of Science

    On conclusion of the school’s three-year course, Rutherford received a bachelor of arts (B.A.) degree and won a scholarship for a postgraduate year of study at Canterbury. He completed this at the end of 1893, earning a master of arts (M.A.) degree with first-class honours in physical science, mathematics, and mathematical physics. He was encouraged to remain yet another year in Christchurch to conduct independent research. Rutherford’s investigation of the ability of a high-frequency electrical discharge, such as that from a capacitor, to magnetize iron earned him a bachelor of science (B.S.) degree at the end of 1894. During this period he fell in love with Mary Newton, the daughter of the woman in whose house he boarded. They married in 1900.

    In recognition of the increasing importance of science, the University of Cambridge had recently changed its rules to allow graduates of other institutions to earn a Cambridge degree after two years of study and completion of an acceptable research project. Rutherford became the school’s first research student. Besides showing that an oscillatory discharge would magnetize iron, which happened already to be known, Rutherford determined that a magnetized needle lost some of its magnetization in a magnetic field produced by an alternating current. This made the needle a detector of electromagnetic waves, a phenomenon that had only recently been discovered. In 1864 the Scottish physicist James Clerk Maxwell had predicted the existence of such waves, and between 1885 and 1889 the German physicist Heinrich Hertz had detected them in experiments in his laboratory. Rutherford’s apparatus for detecting electromagnetic waves, or radio waves, was simpler and had commercial potential. He spent the next year in the Cavendish Laboratory increasing the range and sensitivity of his device, which could receive signals from half a mile away. However, Rutherford lacked the intercontinental vision and entrepreneurial skills of the Italian inventor Guglielmo Marconi, who invented the wireless telegraph in 1896.

    X-rays were discovered in Germany by physicist Wilhelm Conrad Röntgen only a few months after Rutherford arrived at the Cavendish. For their ability to take silhouette photographs of the bones in a living hand, X-rays were fascinating to scientists and laypeople alike. In particular, scientists wished to learn their properties and what they were. Rutherford could not decline the honour of Thomson’s invitation to collaborate on an investigation of the way in which X-rays changed the conductivity of gases. This yielded a classic paper on ionization—the breaking of atoms or molecules into positive and negative parts (ions)—and the charged particles’ attraction to electrodes of the opposite polarity.

    • Lawrence Badash
  4. Feb 3, 2023 · Who did the Gold Foil Experiment? The gold foil experiment was a pathbreaking work conducted by scientists Hans Geiger and Ernest Marsden under the supervision of Nobel laureate physicist Ernest Rutherford that led to the discovery of the proper structure of an atom.

  5. Rutherford’s first researches, in New Zealand, were concerned with the magnetic properties of iron exposed to high-frequency oscillations, and his thesis was entitled Magnetization of Iron by High-Frequency Discharges. He was one of the first to design highly original experiments with high-frequency, alternating currents.

  6. People also ask

  7. Ernest Rutherford was a New Zealand-born British scientist. He was one of the great pioneers in nuclear physics. For his work, Rutherford won the Nobel Prize for Chemistry in 1908.

  1. People also search for