Your virtual fax machine is online and waiting. Activate your free fax and send online. Activate your account and Access your Free secure fax to anywhere in the world now!
Search results
People also ask
When did fax machines become popular?
Who invented the fax machine?
Are faxes still used?
When did faxing start?
How has fax technology changed over time?
Why did fax machines become so popular in the west?
Aug 9, 2021 · Rise of Fax Technology. Through a number inventions in the late 1800s and early 1900s, different methods that were an improvement of Caselli’s technology emerged. Shelford Bidwell is credited with using selenium cells connected to a telephone to send an image to a rotating cylinder.
- Fax a PDF
If a fax encounters as a busy signal or a fax number without...
- 16 Reasons Why
When you send a fax, you receive a “confirmation page.” This...
- Alexander Bain
Alexander Bain Biography – Fax Machine Inventor Last Update:...
- Shelford Bidwell
Shelford Bidwell (6 March 1848 - 18 December 1909) was known...
- Radiofax
What is Radiofax (aka Weatherfax or HF Fax)? Last Update:...
- Giovanni Caselli
Giovanni Caselli Biography – Pantelegraph and Fax Inventor...
- Richard H. Ranger
Richard H. Ranger Biography – Wireless Photoradiogram...
- Herbert E. Ives
Herbert E. Ives Biography – Color Fax Inventor Last Update:...
- Fax a PDF
Mar 7, 2024 · In 1947, the first modern fax machine was invented. Fax machine technology advanced through the 1950s and 1960s, and in 1964, the Xerox Corporation introduced a commercial fax machine. The 1970s and 1980s were the golden age of fax machines.
Aug 1, 2020 · To begin our brief history of the fax machine, we must travel back to 1836. As discussed a couple of weeks ago, 1836 was a tremendous time for communication. Near the end of the decade, Samuel...
- Benjamin Rhodes
- Overview
- Standard fax transmission
- History of fax technology
- Early telegraph facsimile
- Analog telephone facsimile
- Digital facsimile
fax, in telecommunications, the transmission and reproduction of documents by wire or radio wave. Common fax machines are designed to scan printed textual and graphic material and then transmit the information through the telephone network to similar machines, where facsimiles are reproduced close to the form of the original documents. Fax machines...
Most office and home fax machines conform to the Group 3 standard, which was adopted in 1980 in order to ensure the compatibility of digital machines operating through public telephone systems worldwide. As a standard letter-size sheet is fed through a machine, it is scanned repeatedly across its width by a charge-coupled device (CCD), a solid-state scanner that has 1,728 photosensors in a single row. Each photosensor in turn generates a low or high variation in voltage, depending on whether the scanned spot is black or white. Since there normally are 4 scan lines per mm (100 scan lines per inch), the scanning of a single sheet can generate almost two million variations in voltage. The high/low variations are converted to a stream of binary digits, or bits, and the bit stream is subjected to a source encoder, which reduces or “compresses” the number of bits required to represent long runs of white or black spots. The encoded bit stream can then be modulated onto an analog carrier wave by a voice-band modem and transmitted through the telephone network. With source encoding, the number of bits required to represent a typewritten sheet can be reduced from two million to less than 400,000. As a result, at standard fax modem speeds (up to 56,000 bits per second, though usually less) a single page can be transmitted in as little as 15 seconds.
Communication between a transmitting and a receiving fax machine opens with the dialing of the telephone number of the receiving machine. This begins a process known as the “handshake,” in which the two machines exchange signals that establish compatible features such as modem speed, source code, and printing resolution. The page information is then transmitted, followed by a signal that indicates no more pages are to be sent. The called machine signals receipt of the message, and the calling machine signals to disconnect the line.
At the receiving machine, the signal is demodulated, decoded, and stored for timed release to the printer. In older fax machines the document was reproduced on special thermally sensitive paper, using a print head that had a row of fine wires corresponding to the photosensors in the scanning strip. In modern machines it is reproduced on plain paper by a xerographic process, in which a minutely focused beam of light from a semiconductor laser or a light-emitting diode, modulated by the incoming data stream, is swept across a rotating, electrostatically charged drum. The drum picks up toner powder in charged spots corresponding to black spots on the original document and transfers the toner to the paper.
Group 3 facsimile transmission can be conducted through all telecommunications media, whether they be copper wire, optical fibre, microwave radio, or cellular radio. In addition, personal computers (PCs) with the proper hardware and software can send files directly to fax machines without printing and scanning. Conversely, documents from a remote fax machine may be received by a computer for storage in its memory and eventual reproduction on a desktop printer. Internet fax servers have been developed that can send or receive facsimile documents and transmit them by e-mail between PCs.
The concepts of facsimile transmission were developed in the 19th century using contemporary telegraph technology. Widespread employment of the method, however, did not take place until the 1980s, when inexpensive means of adapting digitized information to telephone circuits became common. The long and ultimately fruitful history of fax technology is traced in this section.
Are you a student? Get Britannica Premium for only 24.95 - a 67% discount!
Facsimile transmission over wires traces its origins to Alexander Bain, a Scottish mechanic. In 1843, less than seven years after the invention of the telegraph by American Samuel F.B. Morse, Bain received a British patent for “improvements in producing and regulating electric currents and improvements in timepieces and in electric printing and signal telegraphs.” Bain’s fax transmitter was designed to scan a two-dimensional surface (Bain proposed metal type as the surface) by means of a stylus mounted on a pendulum. The invention was never demonstrated.
Frederick Bakewell, an English physicist, was the first to actually demonstrate facsimile transmission. The demonstration took place in London at the Great Exhibition of 1851. Bakewell’s system differed somewhat from Bain’s in that images were transmitted and received on cylinders—a method that was widely practiced through the 1960s. At the transmitter the image to be scanned was written with varnish or some other nonconducting material on tinfoil, wrapped around the transmitter cylinder, and then scanned by a conductive stylus that, like Bain’s stylus, was mounted to a pendulum. The cylinder rotated at a uniform rate by means of a clock mechanism. At the receiver a similar pendulum-driven stylus marked chemically treated paper with an electric current as the receiving cylinder rotated.
Further deployment of fax transmission had to await the development of improved long-distance telephone service. Between 1920 and 1923 the American Telephone & Telegraph Company (AT&T) worked on telephone facsimile technology, and in 1924 the telephotography machine was used to send pictures from political conventions in Cleveland, Ohio, and Chicago to New York City for publication in newspapers. The telephotography machine employed transparent cylindrical drums, which were driven by motors that were synchronized between transmitter and receiver. At the transmitter a positive transparent print was placed on the drum and was scanned by a vacuum-tube photoelectric cell. The output of the photocell modulated a 1,800-hertz carrier signal, which was subsequently sent over the telephone line. At the receiver an unexposed negative was progressively illuminated by a narrowly focused light beam, the intensity of which corresponded to the output of the photoelectric cell in the transmitter. The AT&T fax system was capable of transmitting a 12.7-by-17.8-cm (5-by-7-inch) photograph in seven minutes with a resolution of 4 lines per mm (100 lines per inch).
Further advancements in fax technology occurred during the 1930s and ’40s. In 1948 Western Union introduced its desk-fax service, which was based on a small office machine. Some 50,000 desk-fax units were built until the service was discontinued in the 1960s.
Although the Group 2 fax machines proved to be successful in business applications where electronic transmission of documents containing nontextual information such as drawings, diagrams, and signatures was required, the slow transmission rate and the cost of the terminals ultimately limited the growth of fax services. In response, the CCITT developed standards for a new class of fax machine, now known as Group 3, which would use digital transmission of images through modems. With the encoding of a scanned image into binary digits, or bits, various image-compression methods (also known as source encoding or redundancy reduction) could be employed to reduce the number of bits required to represent the original image. By coupling a good source code with a high-speed modem, a Group 3 fax machine could reduce the time required to transmit a single page to less than one minute—a threefold improvement in transmission time over the older Group 2 fax machines. The Group 3 standard was adopted by the CCITT in 1980.
Originally, Group 3 fax was intended for transmission at data rates between 2,400 and 9,600 bits per second. With advances in voice-band modem technology, data transmission rates of 28,800 bits per second and above became common. Between 1981 and 1984 the CCITT sponsored the development of a high-speed fax service that was adopted as the Group 4 standard in 1984. Group 4 fax was intended to supplant Group 3 fax by permitting error-free transmission of documents over digital networks, such as the integrated services digital network (ISDN), at speeds up to 64,000 bits per second. At such rates, transmission time for a single page could be reduced to less than 10 seconds. Group 4 fax has been deployed in areas of the world where ISDN lines are readily available (e.g., Japan and France). However, since other areas (e.g., the United States) do not have many ISDN lines installed in the local telephone loop, Group 4 fax machines must also support Group 3 fax for transmission over analog lines.
The first version of what would become a traditional fax machine was invented by the Xerox Corporation in 1964. It was called long distance xerography, and it was replaced two years later with a more compact version — only 46 pounds — that could be connected to standard telephone lines.
Mar 28, 2019 · By the mid-19th century Alexander Bain, a Scottish clockmaker, had already patented a very rudimentary version of the fax machine. Bain's prototype was the automatic chemical telegraph.
Mar 1, 2016 · The U.S. military embraced faxing in the 1940s as part of a larger system of teletypewriters, radios, and telephones. Fax machines did not go extinct in the 1990s but were absorbed by multifunction printer-copier-scanners and the digital ecosystem of e-mail and the Internet.