Yahoo Web Search

Search results

  1. Dec 21, 2020 · When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum. We have been learning how the first and second derivatives of a function relate information about the graph of that function.

  2. Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.

  3. The concavity of the graph of a function refers to the curvature of the graph over an interval; this curvature is described as being concave up or concave down. Generally, a concave up curve has a shape resembling "∪" and a concave down curve has a shape resembling "∩" as shown in the figure below. Concave up.

    • what is a concave point in a graph used to find1
    • what is a concave point in a graph used to find2
    • what is a concave point in a graph used to find3
    • what is a concave point in a graph used to find4
    • what is a concave point in a graph used to find5
  4. a) Find the intervals on which the graph of \( f(x) = x^4 - 2x^3 + x \) is concave up, concave down and the point(s) of inflection if any. b) Use a graphing calculator to graph \( f \) and confirm your answers to part a).

    • what is a concave point in a graph used to find1
    • what is a concave point in a graph used to find2
    • what is a concave point in a graph used to find3
    • what is a concave point in a graph used to find4
  5. State the first derivative test for critical points. Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph. Explain the concavity test for a function over an open interval.

  6. If f ′ (x) is positive on an interval, the graph of y = f(x) is increasing on that interval. If f ′ (x) is negative on an interval, the graph of y = f(x) is decreasing on that interval. The second derivative tells us if a function is concave up or concave down.

  7. Nov 16, 2022 · The second derivative will allow us to determine where the graph of a function is concave up and concave down. The second derivative will also allow us to identify any inflection points (i.e. where concavity changes) that a function may have.

  1. People also search for