Search results
Dec 21, 2020 · When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum. We have been learning how the first and second derivatives of a function relate information about the graph of that function.
An easy way to test for both is to connect two points on the curve with a straight line. If the line is above the curve, the graph is convex . If the line is below the curve, the graph is concave .
Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.
Nov 16, 2022 · The second derivative will allow us to determine where the graph of a function is concave up and concave down. The second derivative will also allow us to identify any inflection points (i.e. where concavity changes) that a function may have.
The concavity of the graph of a function refers to the curvature of the graph over an interval; this curvature is described as being concave up or concave down. Generally, a concave up curve has a shape resembling "∪" and a concave down curve has a shape resembling "∩" as shown in the figure below. Concave up.
If f ′ (x) is positive on an interval, the graph of y = f(x) is increasing on that interval. If f ′ (x) is negative on an interval, the graph of y = f(x) is decreasing on that interval. The second derivative tells us if a function is concave up or concave down.
Lesson 7: Determining concavity of intervals and finding points of inflection: algebraic. Analyzing concavity (algebraic) Inflection points (algebraic) Mistakes when finding inflection points: second derivative undefined.