Yahoo Web Search

Search results

  1. Nov 16, 2022 · The second derivative will allow us to determine where the graph of a function is concave up and concave down. The second derivative will also allow us to identify any inflection points (i.e. where concavity changes) that a function may have.

  2. Dec 21, 2020 · When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum. We have been learning how the first and second derivatives of a function relate information about the graph of that function.

  3. Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.

  4. Identifying concavity and points of inflections given a function’s graph. Applying the second derivative test to determine the concavity of a function at different critical points. Understanding the relationship between f (x), f ′ (x), and f ′ ′ (x) and how it affects the function’s shape.

  5. A point on a graph where the concavity of the curve changes (from concave down to concave up, or vice versa) is called a point of inflection (Definition 4.14). By implication (think about what separates positive and negative numbers on a number line), if a point (c, f (c)) is a point of inflection, then f ′ (c) = 0. Important: This is a one ...

  6. People also ask

  7. If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.

  1. People also search for