Search results
Dec 21, 2020 · The second derivative is evaluated at each critical point. When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum.
State the first derivative test for critical points. Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph. Explain the concavity test for a function over an open interval.
Review your knowledge of concavity of functions and how we use differential calculus to analyze it.
How to find concavity from the first derivative graph To determine concavity using a graph of f'(x) (the first derivative), find the intervals over which the graph is decreasing or increasing (from left to right).
Sep 16, 2022 · A positive sign on this sign graph tells you that the function is concave up in that interval; a negative sign means concave down. The function has an inflection point (usually) at any x-value where the signs switch from positive to negative or vice versa.
Apr 24, 2022 · If \( f''(x) \) is positive on an interval, the graph of \( y=f(x) \) is concave up on that interval. We can say that \(f\) is increasing (or decreasing) at an increasing rate . If \( f''(x) \) is negative on an interval, the graph of \( y=f(x) \) is concave down on that interval.
If [latex]f''(x)[/latex] is positive on an interval, the graph of [latex]y=f(x)[/latex] is concave up on that interval. We can say that [latex]f[/latex] is increasing (or decreasing) at an increasing rate. If [latex]f''(x)[/latex] is negative on an interval, the graph of [latex]y=f(x)[/latex] is concave down on that interval.