Search results
Review your knowledge of concavity of functions and how we use differential calculus to analyze it.
State the first derivative test for critical points. Use concavity and inflection points to explain how the sign of the second derivative affects the shape of a function’s graph. Explain the concavity test for a function over an open interval.
Dec 21, 2020 · The important \(x\)-values at which concavity might switch are \(x=-1\), \(x=0\) and \(x=1\), which split the number line into four intervals as shown in Figure \(\PageIndex{7}\). We determine the concavity on each.
Courses on Khan Academy are always 100% free. Start practicing—and saving your progress—now: https://www.khanacademy.org/math/ap-calculus-ab/ab-diff-analytic...
- 9 min
- 78.8K
- Khan Academy
How do you determine the concavity for #f(x) = x^4 − 32x^2 + 6#? How do you find the intervals on which the graph of #f(x)=5sqrtx-1# is concave up or is concave down, and find the x - coordinates o the points of inflection?
If f ′ (x) is negative on an interval, the graph of y = f(x) is decreasing on that interval. The second derivative tells us if a function is concave up or concave down. If f ″ (x) is positive on an interval, the graph of y = f(x) is concave up on that interval.
People also ask
How do you determine the concavity of a function?
Does concavity change at a point?
Does concavity change at points B and G?
Does F change concavity at a point?
When is a twice-differentiable function f concave down?
Why do inflection points happen when concavity changes?
Dec 21, 2020 · Example \(\PageIndex{1}\) Describe the concavity of \( f(x)=x^3-x\). Solution. The first dervative is \( f'(x)=3x^2-1\) and the second is \(f''(x)=6x\). Since \(f''(0)=0\), there is potentially an inflection point at zero.