Yahoo Web Search

Search results

  1. People also ask

  2. Given any x 1 or x 2 on an interval such that x 1 < x 2, if f (x 1) > f (x 2), then f (x) is decreasing over the interval. In the graph of f' (x) below, the graph is decreasing from (-∞, 1) and increasing from (1, ∞), so f (x) is concave down from (-∞, 1) and concave up from (1, ∞).

    • define concavity in math1
    • define concavity in math2
    • define concavity in math3
    • define concavity in math4
    • define concavity in math5
  3. In mathematics, a concave function is one for which the function value at any convex combination of elements in the domain is greater than or equal to that convex combination of those domain elements. Equivalently, a concave function is any function for which the hypograph is convex.

  4. Dec 21, 2020 · When the graph is concave up, the critical point represents a local minimum; when the graph is concave down, the critical point represents a local maximum. We have been learning how the first and second derivatives of a function relate information about the graph of that function.

  5. If f ′ (x) is negative on an interval, the graph of y = f(x) is decreasing on that interval. The second derivative tells us if a function is concave up or concave down. If f ″ (x) is positive on an interval, the graph of y = f(x) is concave up on that interval.

  6. Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.

  7. Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points x1 x2 ∈ , S and for any λ ∈ [0, 1] we have: λx1 (1 − λ) x2 ≥ λf(x1) (1 − λ)f(x2) + +. is called strictly concave if for any two points x1 , x2 ∈ S and for any λ ∈ (0, 1) we have: λx1 (1 − λ) x2 > λf(x1) (1 − λ)f(x2) + +.

  1. People also search for