Yahoo Web Search

Search results

  1. People also ask

  2. Dec 21, 2020 · In general, concavity can change only where either the second derivative is 0, where there is a vertical asymptote, or (rare in practice) where the second derivative is undefined. But concavity doesn't \emph{have} to change at these places.

  3. Given any x 1 or x 2 on an interval such that x 1 < x 2, if f (x 1) > f (x 2), then f (x) is decreasing over the interval. In the graph of f' (x) below, the graph is decreasing from (-∞, 1) and increasing from (1, ∞), so f (x) is concave down from (-∞, 1) and concave up from (1, ∞).

    • define concavity in algebra ii1
    • define concavity in algebra ii2
    • define concavity in algebra ii3
    • define concavity in algebra ii4
    • define concavity in algebra ii5
  4. If f ′ (x) is negative on an interval, the graph of y = f(x) is decreasing on that interval. The second derivative tells us if a function is concave up or concave down. If f ″ (x) is positive on an interval, the graph of y = f(x) is concave up on that interval.

  5. Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points x1 x2 ∈ , S and for any λ ∈ [0, 1] we have: λx1 (1 − λ) x2 ≥ λf(x1) (1 − λ)f(x2) + +. is called strictly concave if for any two points x1 , x2 ∈ S and for any λ ∈ (0, 1) we have: λx1 (1 − λ) x2 > λf(x1) (1 − λ)f(x2) + +.

  6. Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.

  7. 1. f: C!R is concave i for any a;b;c2C, with a<b<c, f(b) f(a) b a f(c) f(b) c b; and, f(b) f(a) b a f(c) f(a) c a: For strict concavity, the inequalities are strict. 2. f: C!R is convex i for any a;b;c2C, with a<b<c, f(b) f(a) b a f(c) f(b) c b; and, f(b) f(a) b a f(c) f(a) c a: For strictly convexity, the inequalities are strict. 2

  1. People also search for