Yahoo Web Search

  1. Automatically Solve Problems. Submit Your Math Problems in Algebra, Words, Latex, or Unicode

    • Network Map

      See Hurricane Electric's network

      in the US and Canada.

    • Free Dns

      Free DNS Service

      Hosted by Hurricane Electric

  2. Parents trust IXL to help their kids reach their academic potential. Join now! A maths website kids love! Master maths with IXL's interactive programme.

    Prices are reasonable and worth every penny - Wendi Kitsteiner

    K-12 Maths - Monthly - £7.99/month - View more items

Search results

  1. People also ask

  2. Dec 21, 2020 · In general, concavity can change only where either the second derivative is 0, where there is a vertical asymptote, or (rare in practice) where the second derivative is undefined. But concavity doesn't \emph{have} to change at these places.

  3. Given any x 1 or x 2 on an interval such that x 1 < x 2, if f (x 1) > f (x 2), then f (x) is decreasing over the interval. In the graph of f' (x) below, the graph is decreasing from (-∞, 1) and increasing from (1, ∞), so f (x) is concave down from (-∞, 1) and concave up from (1, ∞).

    • define concavity in algebra 3 math definition math1
    • define concavity in algebra 3 math definition math2
    • define concavity in algebra 3 math definition math3
    • define concavity in algebra 3 math definition math4
    • define concavity in algebra 3 math definition math5
  4. Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.

  5. Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points x1 x2 ∈ , S and for any λ ∈ [0, 1] we have: λx1 (1 − λ) x2 ≥ λf(x1) (1 − λ)f(x2) + +. is called strictly concave if for any two points x1 , x2 ∈ S and for any λ ∈ (0, 1) we have: λx1 (1 − λ) x2 > λf(x1) (1 − λ)f(x2) + +.

  6. The mathematical definition of a function being concave between points $x_1$ and $x_2$ is the following: $\lambda f(x_1)+(1-\lambda)f(x_2) \leq f(\lambda x_1+(1-\lambda)x_2)$, for any $0 \leq \lambda \leq 1$. Can someone give a detailed, intuitive explanation of this theorem?

  7. Theorem 3. Let C R be an open interval. 1. f: C!R is concave i for any a;b;c2C, with a<b<c, f(b) f(a) b a f(c) f(b) c b; and, f(b) f(a) b a f(c) f(a) c a: For strict concavity, the inequalities are strict. 2. f: C!R is convex i for any a;b;c2C, with a<b<c, f(b) f(a) b a f(c) f(b) c b; and, f(b) f(a) b a f(c) f(a) c a:

  1. People also search for