Automatically Solve Problems. Submit Your Math Problems in Algebra, Words, Latex, or Unicode
- Network Map
See Hurricane Electric's network
in the US and Canada.
- Free Dns
Free DNS Service
Hosted by Hurricane Electric
- Customer Login
Log In To Your
Customer Account
- Contact Support
We're here to help.
Contact us today!
- Layer 2 Transport
Hurricane Electric Layer 2
Transport Services
- Free Ipv6 Tunnel Broker
Hurricane Electric IPv6 Tunnel
Broker is Free and Easy to Use!
- Network Map
Parents trust IXL to help their kids reach their academic potential. Join now! A maths website kids love! Master maths with IXL's interactive programme.
Prices are reasonable and worth every penny - Wendi Kitsteiner
Search results
study.com
- Concavity describes whether a graph opens upward (concave up) or downward (concave down). It indicates whether the graph is curving upwards like an "U" shape or downwards like an "n" shape.
People also ask
How do you find the concavity of a function?
Why do we need to know where a graph is concave?
How do you analyze concavity if n 1 is separable?
How do you find the concavity of a subinterval?
How do you prove a concave function?
Does Ty hold if f is concave?
Dec 21, 2020 · In general, concavity can change only where either the second derivative is 0, where there is a vertical asymptote, or (rare in practice) where the second derivative is undefined. But concavity doesn't \emph{have} to change at these places.
Review your knowledge of concavity of functions and how we use differential calculus to analyze it.
Given any x 1 or x 2 on an interval such that x 1 < x 2, if f (x 1) > f (x 2), then f (x) is decreasing over the interval. In the graph of f' (x) below, the graph is decreasing from (-∞, 1) and increasing from (1, ∞), so f (x) is concave down from (-∞, 1) and concave up from (1, ∞).
Dec 21, 2020 · If we are trying to understand the shape of the graph of a function, knowing where it is concave up and concave down helps us to get a more accurate picture. Of particular interest are points at which the concavity changes from up to down or down to up; such points are called inflection points.
Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points x1 x2 ∈ , S and for any λ ∈ [0, 1] we have: λx1 (1 − λ) x2 ≥ λf(x1) (1 − λ)f(x2) + +. is called strictly concave if for any two points x1 , x2 ∈ S and for any λ ∈ (0, 1) we have: λx1 (1 − λ) x2 > λf(x1) (1 − λ)f(x2) + +.
The mathematical definition of a function being concave between points $x_1$ and $x_2$ is the following: $\lambda f(x_1)+(1-\lambda)f(x_2) \leq f(\lambda x_1+(1-\lambda)x_2)$, for any $0 \leq \lambda \leq 1$. Can someone give a detailed, intuitive explanation of this theorem?
Theorem 3. Let C R be an open interval. 1. f: C!R is concave i for any a;b;c2C, with a<b<c, f(b) f(a) b a f(c) f(b) c b; and, f(b) f(a) b a f(c) f(a) c a: For strict concavity, the inequalities are strict. 2. f: C!R is convex i for any a;b;c2C, with a<b<c, f(b) f(a) b a f(c) f(b) c b; and, f(b) f(a) b a f(c) f(a) c a: