Yahoo Web Search

  1. Make changes to PDFs. Drag & drop interface. Access from any device. Sign up. Edit PDFs even while on the go. Add fillable fields. Quick setup. Start a free trial.

    Good value and easy to use - G2 Crowd

Search results

  1. Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points x1 x2 ∈ , S and for any λ ∈ [0, 1] we have: λx1 (1 − λ) x2 ≥ λf(x1) (1 − λ)f(x2) + +. is called strictly concave if for any two points x1 , x2 ∈ S and for any λ ∈ (0, 1) we have: λx1 (1 − λ) x2 > λf(x1) (1 − λ)f(x2) + +.

  2. In this lecture, we shift our focus to the other important player in convex optimization, namely, convex functions. Here are some of the topics that we will touch upon: Convex, concave, strictly convex, and strongly convex functions. First and second order characterizations of convex functions.

    • 1MB
    • 14
  3. It is also possible to characterize concavity or convexity of functions in terms of the convexity of particular sets. Given the graph of a function, the hypograph of f,

    • 227KB
    • 12
  4. Why do we need concavity and convexity? We will make the following important assumptions, denoted by CC: 1. The set Z is convex; 2. The function g is concave; 3. The function h is convex. Recall the de–nition of the set B : B = f(k;v) : k h(z);v g(z) for some z 2 Zg: Proposition under CC, the set B is convex Proof: suppose that (k 1;v 1) and ...

  5. 1 Concave and convex functions. Definition 1 A function f defined on the convex set C ⊂ Rn is called con-cave if for every x1, x2 ∈ C and 0 ≤ t ≤ 1, we have. f(tx1 + (1 − t)x2) ≥ tf(x1) + (1 − t)f(x2). Definition 2 A function f defined on the convex set C ⊂ Rn is called strictly concave if for every x1 6= x2,and 0 < t < 1, we have.

  6. Convexity, Concavity and Points of Inflexion . 12.1 Introduction . In the plane, we consider a curve , which is the graph of a single - valued differentiable function . Definition 12.1: We say that the curve is convex downward bending up on the interval . if all points of the curve lie above the tangent at any point on the interval.

  7. People also ask

  8. They cover the basic theory of convex sets and functions, several avors of duality, a variety of optimization algorithms (with a focus on nonsmooth problems), and an introduction to variational analysis building up to the Karush-Kuhn-Tucker conditions. Proofs are mostly omitted.

  1. People also search for