Search results
People also ask
What is a concave graph?
Is f g a concave function?
How do you find the concavity of a function?
How do you prove a concave function?
How do you know if a function is concave or convex?
Which function is concave if f1 and f2 are convex?
Review your knowledge of concavity of functions and how we use differential calculus to analyze it.
Concavity refers to the direction of the curvature of a function's graph. It indicates whether the graph is bending upwards (concave up) or downwards (concave down) and is closely related to the second derivative of the function.
Definition 1. A function f : S ⊂ Rn → R defined on a convex set S is concave if for any two points x1 x2 ∈ , S and for any λ ∈ [0, 1] we have: λx1 (1 − λ) x2 ≥ λf(x1) (1 − λ)f(x2) + +. is called strictly concave if for any two points x1 , x2 ∈ S and for any λ ∈ (0, 1) we have: λx1 (1 − λ) x2 > λf(x1) (1 − λ)f(x2) + +.
The concavity of the graph of a function refers to the curvature of the graph over an interval; this curvature is described as being concave up or concave down. Generally, a concave up curve has a shape resembling "∪" and a concave down curve has a shape resembling "∩" as shown in the figure below. Concave up.
It is also possible to characterize concavity or convexity of functions in terms of the convexity of particular sets. Given the graph of a function, the hypograph of f,
- 227KB
- 12
We make these ideas concrete with the following definitions: For a function $f$ that is differentiable at $c$, we say $f$ is concave up at $c$ means that $f(x)$ lies above the tangent line to $f$ at $x=c$, for all $x \ne c$ sufficiently near $c$.
The mathematical definition of a function being concave between points $x_1$ and $x_2$ is the following: $\lambda f(x_1)+(1-\lambda)f(x_2) \leq f(\lambda x_1+(1-\lambda)x_2)$, for any $0 \leq \lambda \leq 1$.