Yahoo Web Search

Search results

  1. Tillering: a major yield determinant regulated by endogenous and environmental factors. Tillering is a determinant of yield of the major crops such as wheat (Triticum aestivum), rice (Oryza sativa), barley (Hordeum vulgare) and sorghum (Sorghum bicolor), [1–4].

    • Overview
    • Primary tillage equipment
    • Secondary tillage
    • Minimum tillage
    • Mulch tillage

    tillage, in agriculture, the preparation of soil for planting and the cultivation of soil after planting. Tillage is the manipulation of the soil into a desired condition by mechanical means; tools are employed to achieve some desired effect (such as pulverization, cutting, or movement). Soil is tilled to change its structure, to kill weeds, and to manage crop residues. Soil structure modification is often necessary to facilitate the intake, storage, and transmission of water and to provide a good environment for seeds and roots. Elimination of weeds is important, because they compete for water, nutrients, and light. Crop residues on the surface must be managed in order to provide conditions suitable for seeding and cultivating a crop. See also no-till agriculture.

    Generally speaking, if the size of the soil aggregates or particles is satisfactory, preparation of the seedbed will consist only of removing weeds and the management of residues. Unfortunately, the practices associated with planting, cultivating, and harvesting usually cause destruction of soil structure. This leaves preparation of the seedbed as the best opportunity to create desirable structure, in which large and stable pores extend from the soil surface to the water table or drains, ensuring rapid infiltration and drainage of excess or free water and promoting aeration of the subsoil. When these large pores are interspersed with small ones, the soil will retain and store moisture also.

    Seedbed preparation procedures depend on soil texture and the desired change in size of aggregates. In soils of coarse texture, tillage will increase aggregate size, provided it is done when only the small pores are just filled with water; tillage at other than this ideal moisture will make for smaller aggregates. By contrast, fine-textured soils form clods; these require breakage into smaller units by weathering or by machines. If too wet or too dry, the power requirements for shattering dry clods or cutting wet ones are prohibitive when using tillage alone. Thus, the farmer usually attempts tillage of such soils only after a slow rain has moistened the clods and made them friable.

    Some soils require deepening of the root zone to permit increased rate of water intake and improved storage. Unfavourable aeration in zones of poor drainage also limits root development and inhibits use of water in the subsoil.

    Equipment used to break and loosen soil for a depth of 15 to 90 cm (6 to 36 inches) may be called primary tillage equipment. It includes moldboard, disk, rotary, chisel, and subsoil plows.

    Are you a student? Get Britannica Premium for only 24.95 - a 67% discount!

    Learn More

    The moldboard plow is adapted to the breaking of many soil types. It is well suited for turning under and covering crop residues. There are hundreds of different designs, each intended to function best in performing certain tasks in specified soils. The part that breaks the soil is called the bottom or base; it is composed of the share, the landside, and the moldboard.

    When a bottom turns the soil, it cuts a trench, or furrow, throwing to one side a ribbon of soil that is called the furrow slice. When plowing is started in the middle of a strip of land, a furrow is plowed across the field, and on the return trip a furrow slice is lapped over the first slice. This leaves a slightly higher ridge than the second, third, and other slices. The ridge is called a back furrow. When two strips of land are finished, the last furrows cut leave a trench about twice the width of one bottom, called a dead furrow. When land is broken by continuous lapping of furrows, it is called flat broken. If land is broken in alternate back furrows and dead furrows, it is said to be bedded or listed.

    Different soils require different-shaped moldboards in order to give the same degree of pulverization of the soil. Thus, moldboards are divided into several different classes, including stubble, general-purpose, general-purpose for clay and stiff-sod soil, slat, blackland, and chilled general-purpose. The blackland bottom is used, for example, in areas in which the soil does not scour easily—that is, where the soil does not leave the surface of the emerging plow clean and polished.

    Secondary tillage, to improve the seedbed by increased soil pulverization, to conserve moisture through destruction of weeds, and to cut up crop residues, is accomplished by use of various types of cultivators, harrows, rollers, or pulverizers, and tools for mulching and fallowing. Used for stirring the soil at comparatively shallow depths, secondary tillage equipment is generally employed after the deeper primary tillage operations; some primary tillage tools, however, are usable for secondary tillage. There are five principal types of harrows: the disk, the spike-tooth, the spring-tooth, the rotary cross-harrow, and the soil surgeon. Rollers, or pulverizers, with V-shaped wheels make a firm and continuous seedbed while crushing clods. These tools often are combined with each other.

    When moisture is scarce and control of wind and water erosion necessary, tillage is sometimes carried out in such a way that crop residues are left on the surface. This system is called trash farming, stubble mulch, or subsurface tillage. Principal equipment for subsurface tillage consists of sweeps and rod weeders. Sweeps are V-shaped knives drawn below the surface with cutting planes horizontal. A mounted set of sweeps provided with power lift and depth regulation is often called a field cultivator.

    The typical rod weeder consists of a frame with several plowlike beams, each having a bearing at its point. Rods are extended through the bearings, which revolve slowly under power from a drive wheel. The revolving rod runs a few inches below the surface and pulls up vegetative growth; clearance of the growth from the rod is assisted by its rotation. Rod weeders are sometimes attached to chisel plows.

    Some control of weeds is obtained by tillage that leaves the middles between crop rows loose and cloddy. On mechanized farms this is often accomplished with a cultivator pulled by a tractor. When a good seedbed is prepared only in the row, the seeded crop can become established ahead of the weeds. Plowing with the moldboard plow buries the weed seeds, retards their sprouting, and tends to reduce the operations needed to control them. If weed infestations become bad, they can be reduced somewhat by undercutting.

    The use of cropping systems with minimal tillage is usually desirable, because intensive tillage tends to break down soil structure. Techniques such as mulching also help prevent raindrops from injuring the surface structure. Excessive tillage leaves the soil susceptible to crusting, impedes water intake, increases runoff, and thus reduces water storage for crop use. Intensive vegetable production in warm climates where three crops per year may be grown on the same land may reduce the soil to a single-grain structure that facilitates surface cementation and poor aeration.

    The loosening and granulating actions of plowing may improve soil structure if the plowing is done when the moisture content is optimal; if not so timed, however, plowing can create unfavourable structure. The lifting and inversion of the furrow slice likewise may not always be desirable, because in many cases it is better to leave a trashy surface.

    Mulch tillage is a system in which crop residues are left on the surface, and subsurface tillage leaves them relatively undisturbed. In dryland areas, a maximum amount of mulch is left on the surface; in more humid regions, however, some of the mulch is buried. Planting is accomplished with disk openers that go through several inches of mulch. Since mulch decomposition may deprive the crop of nitrogen, extra fertilizer is often placed below the mulch in humid areas. In rainy sections, intercropping extends the protection against erosion provided by mulches. Intercrops are typically small grains or sod crops such as alfalfa or clover grown between the rows of a field crop that reach maturity shortly after the field crop has been established and furnish mulch cover for a long time. See also green manure.

    If growth of the intercrop competes with the main crop for moisture and nutrients, that growth may be killed at seeding time or soon thereafter by undercutting with sweeps.

  2. Apr 10, 2003 · Tillering in rice (Oryza sativa L.) is an important agronomic trait for grain production, and also a model system for the study of branching in monocotyledonous plants.

    • Xueyong Li, Qian Qian, Zhiming Fu, Yonghong Wang, Guosheng Xiong, Dali Zeng, Xiaoqun Wang, Xinfang L...
    • 2003
  3. Nov 3, 2023 · The dynamic of tillering was defined in four key phases—pre-tillering, tiller emergence, cessation of tiller emergence and cessation of tiller growth. Tillering commenced at full expansion of leaf four and thereafter was synchronized with leaf appearance.

  4. Nov 2, 2023 · Tillering, also known as shoot branching, is a fundamental trait for cereal crops such as rice to produce sufficient panicle numbers. Effective tillering that guarantees successful panicle production is essential for achieving high crop yields.

  5. Sep 30, 2015 · The questions that need to be addressed include: (1) what are the genes or QTL controlling the timing and rate of tillering, tillering capacity, and the degree of tiller abortion and survival; (2) whether and how the shade from neighbouring plants affects tillering dynamics, particularly tiller abortion, and if so, what is the genetic basis of ...

  6. People also ask

  7. Apr 29, 2022 · The tillage operations that are carried out before the harvesting of crops and after the sowing or planting of crops is called after tillage/inter tillage/inter cultivation. The main reason for this tillage is to root out weeds and to reapply fertilizers and manures.

  1. People also search for