Yahoo Web Search

  1. vicorpower.com has been visited by 10K+ users in the past month

    Learn a better way to power your LEO and MEO communication satellite constellations. Space battery OEMs depend on Vicor to deliver the efficiency and power density they need.

    • Accessories

      Mechanical and electrical

      accessories for power systems.

    • Vpx Systems

      Vpx Power Systems

      VITA 62 and SOSA

  2. Browse new releases, best sellers or classics & find your next favourite book. Huge selection of books in all genres. Free UK delivery on eligible orders

Search results

  1. Dictionary
    communications satellite

    noun

    • 1. a satellite placed in orbit round the earth in order to relay television, radio, and phone signals.
  2. People also ask

  3. Jul 13, 2024 · Satellite communication, the use of artificial satellites to provide communication links between various points on Earth. Satellite communications play a vital role in the global telecommunications system.

  4. Satellite communication is the transfer of information using artificial satellites that have been launched into Earth's orbit, transmitting and relaying information from one place to another on a global scale.

  5. A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth.

    • Overview
    • How satellites work

    A satellite is basically a self-contained communications system with the ability to receive signals from Earth and to retransmit those signals back with the use of a transponder—an integrated receiver and transmitter of radio signals. A satellite has to withstand the shock of being accelerated during launch up to the orbital velocity of 28,100 km (17,500 miles) an hour and a hostile space environment where it can be subject to radiation and extreme temperatures for its projected operational life, which can last up to 20 years. In addition, satellites have to be light, as the cost of launching a satellite is quite expensive and based on weight. To meet these challenges, satellites must be small and made of lightweight and durable materials. They must operate at a very high reliability of more than 99.9 percent in the vacuum of space with no prospect of maintenance or repair.

    The main components of a satellite consist of the communications system, which includes the antennas and transponders that receive and retransmit signals, the power system, which includes the solar panels that provide power, and the propulsion system, which includes the rockets that propel the satellite. A satellite needs its own propulsion system to get itself to the right orbital location and to make occasional corrections to that position. A satellite in geostationary orbit can deviate up to a degree every year from north to south or east to west of its location because of the gravitational pull of the Moon and Sun. A satellite has thrusters that are fired occasionally to make adjustments in its position. The maintenance of a satellite’s orbital position is called “station keeping,” and the corrections made by using the satellite’s thrusters are called “attitude control.” A satellite’s life span is determined by the amount of fuel it has to power these thrusters. Once the fuel runs out, the satellite eventually drifts into space and out of operation, becoming space debris.

    A satellite in orbit has to operate continuously over its entire life span. It needs internal power to be able to operate its electronic systems and communications payload. The main source of power is sunlight, which is harnessed by the satellite’s solar panels. A satellite also has batteries on board to provide power when the Sun is blocked by Earth. The batteries are recharged by the excess current generated by the solar panels when there is sunlight.

    Satellites operate in extreme temperatures from −150 °C (−238 °F) to 150 °C (300 °F) and may be subject to radiation in space. Satellite components that can be exposed to radiation are shielded with aluminium and other radiation-resistant material. A satellite’s thermal system protects its sensitive electronic and mechanical components and maintains it in its optimum functioning temperature to ensure its continuous operation. A satellite’s thermal system also protects sensitive satellite components from the extreme changes in temperature by activation of cooling mechanisms when it gets too hot or heating systems when it gets too cold.

    The tracking telemetry and control (TT&C) system of a satellite is a two-way communication link between the satellite and TT&C on the ground. This allows a ground station to track a satellite’s position and control the satellite’s propulsion, thermal, and other systems. It can also monitor the temperature, electrical voltages, and other important parameters of a satellite.

    Communication satellites range from microsatellites weighing less than 1 kg (2.2 pounds) to large satellites weighing over 6,500 kg (14,000 pounds). Advances in miniaturization and digitalization have substantially increased the capacity of satellites over the years. Early Bird had just one transponder capable of sending just one TV channel. The Boeing 702 series of satellites, in contrast, can have more than 100 transponders, and with the use of digital compression technology each transponder can have up to 16 channels, providing more than 1,600 TV channels through one satellite.

    A satellite is basically a self-contained communications system with the ability to receive signals from Earth and to retransmit those signals back with the use of a transponder—an integrated receiver and transmitter of radio signals. A satellite has to withstand the shock of being accelerated during launch up to the orbital velocity of 28,100 km (17,500 miles) an hour and a hostile space environment where it can be subject to radiation and extreme temperatures for its projected operational life, which can last up to 20 years. In addition, satellites have to be light, as the cost of launching a satellite is quite expensive and based on weight. To meet these challenges, satellites must be small and made of lightweight and durable materials. They must operate at a very high reliability of more than 99.9 percent in the vacuum of space with no prospect of maintenance or repair.

    The main components of a satellite consist of the communications system, which includes the antennas and transponders that receive and retransmit signals, the power system, which includes the solar panels that provide power, and the propulsion system, which includes the rockets that propel the satellite. A satellite needs its own propulsion system to get itself to the right orbital location and to make occasional corrections to that position. A satellite in geostationary orbit can deviate up to a degree every year from north to south or east to west of its location because of the gravitational pull of the Moon and Sun. A satellite has thrusters that are fired occasionally to make adjustments in its position. The maintenance of a satellite’s orbital position is called “station keeping,” and the corrections made by using the satellite’s thrusters are called “attitude control.” A satellite’s life span is determined by the amount of fuel it has to power these thrusters. Once the fuel runs out, the satellite eventually drifts into space and out of operation, becoming space debris.

    A satellite in orbit has to operate continuously over its entire life span. It needs internal power to be able to operate its electronic systems and communications payload. The main source of power is sunlight, which is harnessed by the satellite’s solar panels. A satellite also has batteries on board to provide power when the Sun is blocked by Earth. The batteries are recharged by the excess current generated by the solar panels when there is sunlight.

    Satellites operate in extreme temperatures from −150 °C (−238 °F) to 150 °C (300 °F) and may be subject to radiation in space. Satellite components that can be exposed to radiation are shielded with aluminium and other radiation-resistant material. A satellite’s thermal system protects its sensitive electronic and mechanical components and maintains it in its optimum functioning temperature to ensure its continuous operation. A satellite’s thermal system also protects sensitive satellite components from the extreme changes in temperature by activation of cooling mechanisms when it gets too hot or heating systems when it gets too cold.

    The tracking telemetry and control (TT&C) system of a satellite is a two-way communication link between the satellite and TT&C on the ground. This allows a ground station to track a satellite’s position and control the satellite’s propulsion, thermal, and other systems. It can also monitor the temperature, electrical voltages, and other important parameters of a satellite.

    Communication satellites range from microsatellites weighing less than 1 kg (2.2 pounds) to large satellites weighing over 6,500 kg (14,000 pounds). Advances in miniaturization and digitalization have substantially increased the capacity of satellites over the years. Early Bird had just one transponder capable of sending just one TV channel. The Boeing 702 series of satellites, in contrast, can have more than 100 transponders, and with the use of digital compression technology each transponder can have up to 16 channels, providing more than 1,600 TV channels through one satellite.

  6. If the communication takes place between any two earth stations through a satellite, then it is called as satellite communication. In this communication, electromagnetic waves are used as carrier signals.

  7. Aug 24, 2023 · Satellite communication is a technology that uses artificial satellites to transmit and receive signals. These signals can carry a wide variety of data, from television broadcasts to internet data and even secure military communications.

  1. Don't Buy From Anyone Else Until You've Seen TLC Electrical's Prices! Fast & Secure Checkout. We Deliver to Your Door or You Can Pick Up in Store!

  1. People also search for